Copied to
clipboard

G = C3×C325D8order 432 = 24·33

Direct product of C3 and C325D8

direct product, metabelian, supersoluble, monomial

Aliases: C3×C325D8, C3311D8, C327D24, C241(C3×S3), (C3×C24)⋊9C6, C31(C3×D24), C243(C3⋊S3), (C3×C24)⋊10S3, C12⋊S37C6, C328(C3×D8), C12.81(S3×C6), (C32×C24)⋊3C2, C6.20(C3×D12), (C3×C6).62D12, (C3×C12).208D6, (C32×C6).58D4, C6.23(C12⋊S3), (C32×C12).83C22, C81(C3×C3⋊S3), C4.9(C6×C3⋊S3), C12.85(C2×C3⋊S3), (C3×C6).50(C3×D4), C2.4(C3×C12⋊S3), (C3×C12).73(C2×C6), (C3×C12⋊S3)⋊16C2, SmallGroup(432,483)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C3×C325D8
C1C3C32C3×C6C3×C12C32×C12C3×C12⋊S3 — C3×C325D8
C32C3×C6C3×C12 — C3×C325D8
C1C6C12C24

Generators and relations for C3×C325D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 772 in 164 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C24, C24, C24, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, D24, C3×D8, C3×C3⋊S3, C32×C6, C3×C24, C3×C24, C3×C24, C3×D12, C12⋊S3, C32×C12, C6×C3⋊S3, C3×D24, C325D8, C32×C24, C3×C12⋊S3, C3×C325D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊S3, D12, C3×D4, S3×C6, C2×C3⋊S3, D24, C3×D8, C3×C3⋊S3, C3×D12, C12⋊S3, C6×C3⋊S3, C3×D24, C325D8, C3×C12⋊S3, C3×C325D8

Smallest permutation representation of C3×C325D8
On 144 points
Generators in S144
(1 88 104)(2 81 97)(3 82 98)(4 83 99)(5 84 100)(6 85 101)(7 86 102)(8 87 103)(9 22 61)(10 23 62)(11 24 63)(12 17 64)(13 18 57)(14 19 58)(15 20 59)(16 21 60)(25 38 44)(26 39 45)(27 40 46)(28 33 47)(29 34 48)(30 35 41)(31 36 42)(32 37 43)(49 137 95)(50 138 96)(51 139 89)(52 140 90)(53 141 91)(54 142 92)(55 143 93)(56 144 94)(65 129 77)(66 130 78)(67 131 79)(68 132 80)(69 133 73)(70 134 74)(71 135 75)(72 136 76)(105 124 113)(106 125 114)(107 126 115)(108 127 116)(109 128 117)(110 121 118)(111 122 119)(112 123 120)
(1 78 118)(2 79 119)(3 80 120)(4 73 113)(5 74 114)(6 75 115)(7 76 116)(8 77 117)(9 47 142)(10 48 143)(11 41 144)(12 42 137)(13 43 138)(14 44 139)(15 45 140)(16 46 141)(17 31 95)(18 32 96)(19 25 89)(20 26 90)(21 27 91)(22 28 92)(23 29 93)(24 30 94)(33 54 61)(34 55 62)(35 56 63)(36 49 64)(37 50 57)(38 51 58)(39 52 59)(40 53 60)(65 109 87)(66 110 88)(67 111 81)(68 112 82)(69 105 83)(70 106 84)(71 107 85)(72 108 86)(97 131 122)(98 132 123)(99 133 124)(100 134 125)(101 135 126)(102 136 127)(103 129 128)(104 130 121)
(1 104 88)(2 97 81)(3 98 82)(4 99 83)(5 100 84)(6 101 85)(7 102 86)(8 103 87)(9 22 61)(10 23 62)(11 24 63)(12 17 64)(13 18 57)(14 19 58)(15 20 59)(16 21 60)(25 38 44)(26 39 45)(27 40 46)(28 33 47)(29 34 48)(30 35 41)(31 36 42)(32 37 43)(49 137 95)(50 138 96)(51 139 89)(52 140 90)(53 141 91)(54 142 92)(55 143 93)(56 144 94)(65 77 129)(66 78 130)(67 79 131)(68 80 132)(69 73 133)(70 74 134)(71 75 135)(72 76 136)(105 113 124)(106 114 125)(107 115 126)(108 116 127)(109 117 128)(110 118 121)(111 119 122)(112 120 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 16)(8 15)(17 82)(18 81)(19 88)(20 87)(21 86)(22 85)(23 84)(24 83)(25 110)(26 109)(27 108)(28 107)(29 106)(30 105)(31 112)(32 111)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 128)(40 127)(41 113)(42 120)(43 119)(44 118)(45 117)(46 116)(47 115)(48 114)(49 132)(50 131)(51 130)(52 129)(53 136)(54 135)(55 134)(56 133)(57 97)(58 104)(59 103)(60 102)(61 101)(62 100)(63 99)(64 98)(65 90)(66 89)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 144)(74 143)(75 142)(76 141)(77 140)(78 139)(79 138)(80 137)

G:=sub<Sym(144)| (1,88,104)(2,81,97)(3,82,98)(4,83,99)(5,84,100)(6,85,101)(7,86,102)(8,87,103)(9,22,61)(10,23,62)(11,24,63)(12,17,64)(13,18,57)(14,19,58)(15,20,59)(16,21,60)(25,38,44)(26,39,45)(27,40,46)(28,33,47)(29,34,48)(30,35,41)(31,36,42)(32,37,43)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,129,77)(66,130,78)(67,131,79)(68,132,80)(69,133,73)(70,134,74)(71,135,75)(72,136,76)(105,124,113)(106,125,114)(107,126,115)(108,127,116)(109,128,117)(110,121,118)(111,122,119)(112,123,120), (1,78,118)(2,79,119)(3,80,120)(4,73,113)(5,74,114)(6,75,115)(7,76,116)(8,77,117)(9,47,142)(10,48,143)(11,41,144)(12,42,137)(13,43,138)(14,44,139)(15,45,140)(16,46,141)(17,31,95)(18,32,96)(19,25,89)(20,26,90)(21,27,91)(22,28,92)(23,29,93)(24,30,94)(33,54,61)(34,55,62)(35,56,63)(36,49,64)(37,50,57)(38,51,58)(39,52,59)(40,53,60)(65,109,87)(66,110,88)(67,111,81)(68,112,82)(69,105,83)(70,106,84)(71,107,85)(72,108,86)(97,131,122)(98,132,123)(99,133,124)(100,134,125)(101,135,126)(102,136,127)(103,129,128)(104,130,121), (1,104,88)(2,97,81)(3,98,82)(4,99,83)(5,100,84)(6,101,85)(7,102,86)(8,103,87)(9,22,61)(10,23,62)(11,24,63)(12,17,64)(13,18,57)(14,19,58)(15,20,59)(16,21,60)(25,38,44)(26,39,45)(27,40,46)(28,33,47)(29,34,48)(30,35,41)(31,36,42)(32,37,43)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,77,129)(66,78,130)(67,79,131)(68,80,132)(69,73,133)(70,74,134)(71,75,135)(72,76,136)(105,113,124)(106,114,125)(107,115,126)(108,116,127)(109,117,128)(110,118,121)(111,119,122)(112,120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,16)(8,15)(17,82)(18,81)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,110)(26,109)(27,108)(28,107)(29,106)(30,105)(31,112)(32,111)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,128)(40,127)(41,113)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,132)(50,131)(51,130)(52,129)(53,136)(54,135)(55,134)(56,133)(57,97)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,98)(65,90)(66,89)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,144)(74,143)(75,142)(76,141)(77,140)(78,139)(79,138)(80,137)>;

G:=Group( (1,88,104)(2,81,97)(3,82,98)(4,83,99)(5,84,100)(6,85,101)(7,86,102)(8,87,103)(9,22,61)(10,23,62)(11,24,63)(12,17,64)(13,18,57)(14,19,58)(15,20,59)(16,21,60)(25,38,44)(26,39,45)(27,40,46)(28,33,47)(29,34,48)(30,35,41)(31,36,42)(32,37,43)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,129,77)(66,130,78)(67,131,79)(68,132,80)(69,133,73)(70,134,74)(71,135,75)(72,136,76)(105,124,113)(106,125,114)(107,126,115)(108,127,116)(109,128,117)(110,121,118)(111,122,119)(112,123,120), (1,78,118)(2,79,119)(3,80,120)(4,73,113)(5,74,114)(6,75,115)(7,76,116)(8,77,117)(9,47,142)(10,48,143)(11,41,144)(12,42,137)(13,43,138)(14,44,139)(15,45,140)(16,46,141)(17,31,95)(18,32,96)(19,25,89)(20,26,90)(21,27,91)(22,28,92)(23,29,93)(24,30,94)(33,54,61)(34,55,62)(35,56,63)(36,49,64)(37,50,57)(38,51,58)(39,52,59)(40,53,60)(65,109,87)(66,110,88)(67,111,81)(68,112,82)(69,105,83)(70,106,84)(71,107,85)(72,108,86)(97,131,122)(98,132,123)(99,133,124)(100,134,125)(101,135,126)(102,136,127)(103,129,128)(104,130,121), (1,104,88)(2,97,81)(3,98,82)(4,99,83)(5,100,84)(6,101,85)(7,102,86)(8,103,87)(9,22,61)(10,23,62)(11,24,63)(12,17,64)(13,18,57)(14,19,58)(15,20,59)(16,21,60)(25,38,44)(26,39,45)(27,40,46)(28,33,47)(29,34,48)(30,35,41)(31,36,42)(32,37,43)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,77,129)(66,78,130)(67,79,131)(68,80,132)(69,73,133)(70,74,134)(71,75,135)(72,76,136)(105,113,124)(106,114,125)(107,115,126)(108,116,127)(109,117,128)(110,118,121)(111,119,122)(112,120,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,16)(8,15)(17,82)(18,81)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,110)(26,109)(27,108)(28,107)(29,106)(30,105)(31,112)(32,111)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,128)(40,127)(41,113)(42,120)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,132)(50,131)(51,130)(52,129)(53,136)(54,135)(55,134)(56,133)(57,97)(58,104)(59,103)(60,102)(61,101)(62,100)(63,99)(64,98)(65,90)(66,89)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,144)(74,143)(75,142)(76,141)(77,140)(78,139)(79,138)(80,137) );

G=PermutationGroup([[(1,88,104),(2,81,97),(3,82,98),(4,83,99),(5,84,100),(6,85,101),(7,86,102),(8,87,103),(9,22,61),(10,23,62),(11,24,63),(12,17,64),(13,18,57),(14,19,58),(15,20,59),(16,21,60),(25,38,44),(26,39,45),(27,40,46),(28,33,47),(29,34,48),(30,35,41),(31,36,42),(32,37,43),(49,137,95),(50,138,96),(51,139,89),(52,140,90),(53,141,91),(54,142,92),(55,143,93),(56,144,94),(65,129,77),(66,130,78),(67,131,79),(68,132,80),(69,133,73),(70,134,74),(71,135,75),(72,136,76),(105,124,113),(106,125,114),(107,126,115),(108,127,116),(109,128,117),(110,121,118),(111,122,119),(112,123,120)], [(1,78,118),(2,79,119),(3,80,120),(4,73,113),(5,74,114),(6,75,115),(7,76,116),(8,77,117),(9,47,142),(10,48,143),(11,41,144),(12,42,137),(13,43,138),(14,44,139),(15,45,140),(16,46,141),(17,31,95),(18,32,96),(19,25,89),(20,26,90),(21,27,91),(22,28,92),(23,29,93),(24,30,94),(33,54,61),(34,55,62),(35,56,63),(36,49,64),(37,50,57),(38,51,58),(39,52,59),(40,53,60),(65,109,87),(66,110,88),(67,111,81),(68,112,82),(69,105,83),(70,106,84),(71,107,85),(72,108,86),(97,131,122),(98,132,123),(99,133,124),(100,134,125),(101,135,126),(102,136,127),(103,129,128),(104,130,121)], [(1,104,88),(2,97,81),(3,98,82),(4,99,83),(5,100,84),(6,101,85),(7,102,86),(8,103,87),(9,22,61),(10,23,62),(11,24,63),(12,17,64),(13,18,57),(14,19,58),(15,20,59),(16,21,60),(25,38,44),(26,39,45),(27,40,46),(28,33,47),(29,34,48),(30,35,41),(31,36,42),(32,37,43),(49,137,95),(50,138,96),(51,139,89),(52,140,90),(53,141,91),(54,142,92),(55,143,93),(56,144,94),(65,77,129),(66,78,130),(67,79,131),(68,80,132),(69,73,133),(70,74,134),(71,75,135),(72,76,136),(105,113,124),(106,114,125),(107,115,126),(108,116,127),(109,117,128),(110,118,121),(111,119,122),(112,120,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,16),(8,15),(17,82),(18,81),(19,88),(20,87),(21,86),(22,85),(23,84),(24,83),(25,110),(26,109),(27,108),(28,107),(29,106),(30,105),(31,112),(32,111),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,128),(40,127),(41,113),(42,120),(43,119),(44,118),(45,117),(46,116),(47,115),(48,114),(49,132),(50,131),(51,130),(52,129),(53,136),(54,135),(55,134),(56,133),(57,97),(58,104),(59,103),(60,102),(61,101),(62,100),(63,99),(64,98),(65,90),(66,89),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,144),(74,143),(75,142),(76,141),(77,140),(78,139),(79,138),(80,137)]])

117 conjugacy classes

class 1 2A2B2C3A3B3C···3N 4 6A6B6C···6N6O6P6Q6R8A8B12A···12Z24A···24AZ
order1222333···34666···666668812···1224···24
size113636112···22112···236363636222···22···2

117 irreducible representations

dim111111222222222222
type+++++++++
imageC1C2C2C3C6C6S3D4D6D8C3×S3D12C3×D4S3×C6D24C3×D8C3×D12C3×D24
kernelC3×C325D8C32×C24C3×C12⋊S3C325D8C3×C24C12⋊S3C3×C24C32×C6C3×C12C33C24C3×C6C3×C6C12C32C32C6C3
# reps112224414288281641632

Matrix representation of C3×C325D8 in GL4(𝔽73) generated by

8000
0800
0010
0001
,
8000
06400
00721
00720
,
64000
0800
0010
0001
,
51000
06300
00720
00072
,
06300
51000
00721
0001
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[8,0,0,0,0,64,0,0,0,0,72,72,0,0,1,0],[64,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[51,0,0,0,0,63,0,0,0,0,72,0,0,0,0,72],[0,51,0,0,63,0,0,0,0,0,72,0,0,0,1,1] >;

C3×C325D8 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_5D_8
% in TeX

G:=Group("C3xC3^2:5D8");
// GroupNames label

G:=SmallGroup(432,483);
// by ID

G=gap.SmallGroup(432,483);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,260,1011,80,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽